184 research outputs found

    Parameter-independent Iterative Approximate Byzantine Consensus

    Full text link
    In this work, we explore iterative approximate Byzantine consensus algorithms that do not make explicit use of the global parameter of the graph, i.e., the upper-bound on the number of faults, f

    Relaxed Byzantine Vector Consensus

    Get PDF
    Exact Byzantine consensus problem requires that non-faulty processes reach agreement on a decision (or output) that is in the convex hull of the inputs at the non-faulty processes. It is well-known that exact consensus is impossible in an asynchronous system in presence of faults, and in a synchronous system, n>=3f+1 is tight on the number of processes to achieve exact Byzantine consensus with scalar inputs, in presence of up to f Byzantine faulty processes. Recent work has shown that when the inputs are d-dimensional vectors of reals, n>=max(3f+1,(d+1)f+1) is tight to achieve exact Byzantine consensus in synchronous systems, and n>= (d+2)f+1 for approximate Byzantine consensus in asynchronous systems. Due to the dependence of the lower bound on vector dimension d, the number of processes necessary becomes large when the vector dimension is large. With the hope of reducing the lower bound on n, we consider two relaxed versions of Byzantine vector consensus: k-Relaxed Byzantine vector consensus and (delta,p)-Relaxed Byzantine vector consensus. In k-relaxed consensus, the validity condition requires that the output must be in the convex hull of projection of the inputs onto any subset of k-dimensions of the vectors. For (delta,p)-consensus the validity condition requires that the output must be within distance delta of the convex hull of the inputs of the non-faulty processes, where L_p norm is used as the distance metric. For (delta,p)-consensus, we consider two versions: in one version, delta is a constant, and in the second version, delta is a function of the inputs themselves. We show that for k-relaxed consensus and (delta,p)-consensus with constant delta>=0, the bound on n is identical to the bound stated above for the original vector consensus problem. On the other hand, when delta depends on the inputs, we show that the bound on n is smaller when d>=3

    Byzantine Vector Consensus in Complete Graphs

    Full text link
    Consider a network of n processes each of which has a d-dimensional vector of reals as its input. Each process can communicate directly with all the processes in the system; thus the communication network is a complete graph. All the communication channels are reliable and FIFO (first-in-first-out). The problem of Byzantine vector consensus (BVC) requires agreement on a d-dimensional vector that is in the convex hull of the d-dimensional input vectors at the non-faulty processes. We obtain the following results for Byzantine vector consensus in complete graphs while tolerating up to f Byzantine failures: * We prove that in a synchronous system, n >= max(3f+1, (d+1)f+1) is necessary and sufficient for achieving Byzantine vector consensus. * In an asynchronous system, it is known that exact consensus is impossible in presence of faulty processes. For an asynchronous system, we prove that n >= (d+2)f+1 is necessary and sufficient to achieve approximate Byzantine vector consensus. Our sufficiency proofs are constructive. We show sufficiency by providing explicit algorithms that solve exact BVC in synchronous systems, and approximate BVC in asynchronous systems. We also obtain tight bounds on the number of processes for achieving BVC using algorithms that are restricted to a simpler communication pattern
    • …
    corecore